常识——人工智能过不去的第三道坎

发布于 2021-04-09 03:23



导读:随着人工智能的快速发展,许多学科正在慢慢交叉融合起来。经历了三次起伏的人工智能,它的缺陷和局限性正在显露出来。


正如所有的药一样,所有的知识都是有范围和前提的,失去了这些,知识的副作用就会涌现出来。知识只是常识的素材和原材料,机器只有“知”而没有“识”,不能知行合一。知识不应依附于思想,而应同它合二为一;知识如果不能改变思想,使之变得完善,那就最好把它抛弃。拥有知识,却毫无本事,不知如何使用还不如什么都没有学——那样的知识是一把危险的剑,会给它的主人带来麻烦和伤害。其中,限制知识这些副作用发作的最有效途径之一便是常识的形成,一般而言,常识往往是碎片化的,而态势感知就是通过对这些零零碎碎常识状态、趋势的感觉、知觉形成某种非常识的认识和洞察。另外,常识是人类感知和理解世界的一种基本能力。典型的AI 系统缺乏对物理世界运行的一般理解(如直观物理学)、对人类动机和行为的基本理解(如直觉心理学)、像成年人一样对普遍事物的认知。


DARPA 正在继续开发第二代人工智能技术及其军事应用的同时,积极布局第三代人工智能发展,20182020 财年,通过新设项目和延续项目,致力于第三代人工智能基础研究,旨在通过机器学习和推理、自然语言理解、建模仿真、人机融合等方面的研究,突破人工智能基础理论及核心技术。相关项目包括“机器常识”“终身学习机”“可解释的人工智能”“可靠自主性”“不同来源主动诠释”“自动知识提取”“确保AI 抗欺骗可靠性”“加速人工智能”“基础人工智能科学”“机器通用感知”“利用更少数据学习”“以知识为导向的人工智能推理模式”“高级建模仿真工具”“复杂混合系统”“人机交流”“人机共生”等。除此之外,DARPA 近期发布的人工智能基础研究项目广泛机构公告还包括“开放世界奇异性的人工智能与学习科学”“人机协作社会智能团队”“实时机器学习”等。


如果学问不能教会我们如何思想和行动,那真是莫大的遗憾。因为学问不是用来使没有思想的人有思想,使看不见的人看得见。学问的职责不是为瞎子提供视力,而是训练和矫正视力,但视力本身必须是健康的,可以被训练的。学问是良药,但任何良药都可能变质,保持时间的长短也要看药瓶的质量。


Vladimir Voevodsky 的主要成就是:发展了新的代数簇上同调理论,从而为深刻理论数论与代数几何提供了新的观点。他的工作的特点是:能简易灵活地处理高度抽象的概念,并将这些要领用于解决相当具体的数学问题。上同调概念最初来源于拓扑学,而拓扑学可以粗略地说成是“形状的科学”,其中研究沃沃形状的例子如球面、环面以及它们的高维类似物。拓扑学研究这些对象在连续变形(不允许撕裂)下保持不变的基本性质。通俗地说,上同调论提供了一种方法将拓扑对象分割成一些比较容易研究的片,上同调群则包含了如何将这些基本片装配成原来对象的信息。代数几何中研究的主要对象是代数簇,它们是多项式方程的公共解集。代数簇可以用诸如曲线或曲面之类的几何对象来表示,但它们比那些可变形的拓扑对象更具“刚性”。


DARPA 战略技术办公室(STO2017 年提出的“马赛克战”概念认为未来战场是一个由低成本、低复杂系统组成的拼接图,这些系统以多种方式连接在一起,可创建适合任何场景的理想交织效果。这个概念的一部分是“以新的令人惊讶的方式组合当前已有的武器”,重点是有人/ 无人编组、分解的能力,以及允许指挥官根据战场情形无缝召唤海陆空能力,而不管是哪支部队在提供作战能力。


简单地说,上面介绍的“马赛克战”和“机器常识”,都是对抗博弈人机环境系统的新型拓扑系统,如同沃沃斯基创立的“主上同调”(Motivic Cohomology )理论。其中,真正厉害的不是那些基本的知识、条例和规则,而是应用这些基本的知识、条例和规则的在实践中获得普遍成功能力的人。


本文选自刘伟教授编写的《人机融合——超越人工智能


扫码购买《人机融合——超越人工智能》:

https://shop16345114.m.youzan.com/wscgoods/detail/36covwksqoaya?scan=1&activity=none&from=kdt&qr=directgoods_911562125&shopAutoEnter=1&redirect_count=1

往期精彩必读文章(单击就可查看):

1.三位深度学习之父共获2019年图灵奖,学术人生令人赞叹!!!

2.人工智能的现状与未来

3.国防科技大学教授:殷建平——计算机科学理论的过去、现在与未来

4.图灵奖得主Hamming的22年前经典演讲:如何做研究,才能不被历史遗忘

5.当这位70岁的Hinton老人还在努力推翻自己积累了30年的学术成果时,我才知道什么叫做生命力(附Capsule最全解析)

6.科学正在证明,科学并不科学

7.沉痛!中国半导体 ”芯酸“史!

8.数学的深渊

9. 计算的极限(续)

10.计算的极限

11.高考大数据:哪个省才是高考地狱模式?结论和想象不太一样

12.统计了最近10年的高考分数线,大数据分析告诉你哪些大学最难考?谁是京沪之后的教育第三城?



相关资源